Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Pers Med ; 13(4)2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2295578

ABSTRACT

Physical inactivity increases cardiometabolic risk through a variety of mechanisms, among which alterations of immunological, metabolic, and autonomic control systems may play a pivotal role. Physical inactivity is frequently associated with other factors that may further worsen prognosis. The association between physical inactivity and hypoxia is particularly interesting and characterizes several conditions-whether physiological (e.g., residing or trekking at high altitude and space flights) or pathological (e.g., chronic cardiopulmonary diseases and COVID-19). In this randomized intervention study, we investigated the combined effects of physical inactivity and hypoxia on autonomic control in eleven healthy and physically active male volunteers, both at baseline (ambulatory) conditions and, in a randomized order, hypoxic ambulatory, hypoxic bedrest, and normoxic bedrest (i.e., a simple experimental model of physical inactivity). Autoregressive spectral analysis of cardiovascular variabilities was employed to assess cardiac autonomic control. Notably, we found hypoxia to be associated with an impairment of cardiac autonomic control, especially when combined with bedrest. In particular, we observed an impairment of indices of baroreflex control, a reduction in the marker of prevalent vagal control to the SA node, and an increase in the marker of sympathetic control to vasculature.

2.
Intern Emerg Med ; 18(2): 359-366, 2023 03.
Article in English | MEDLINE | ID: covidwho-2259177

ABSTRACT

Recently, case series studies on patients with SARS-CoV-2 infection reported an association between remdesivir (RDV) administration and incidental bradycardia. However, the phenomenon has not yet been described in detail. We conducted a retrospective case-control study to evaluate the occurrence of RDV-related bradycardia in patients hospitalized for SARS-CoV2 pneumoniae. We retrospectively evaluated 71 patients, hospitalized in six internal medicine wards of the Milan area, affected by mild-to-moderate COVID-19 who received RDV (RDV group) and 54 controls, matched for sex, age and disease severity on admission (CTR group). The mean heart rate value recorded during the first two days of hospitalization was considered as baseline heart rate (HRb). Heart rate values relative to the 5-days treatment and the 5-days post-treatment were extracted for RDV group, while heart rate values relative to 10 days of hospitalization were considered for the CTR group. ΔHR values were calculated as maximum HR drop versus HRb. Possible associations between ΔHR and clinical-demographic factors were assessed through regression analysis. The RDV group experienced a significantly higher incidence of bradycardia compared to the CTR group (56% vs 33%, OR 2.6, 95% CI 1.2-5.4, p value = 0.011). Moreover, the RDV group showed higher ΔHR values than the CTR group. The HR progressively decreased with daily administration of RDV, reaching the maximun drop on day six (-8.6±1.9 bpm). In RDV group, patients who experienced bradycardia had higher drop in HR, higher alanine aminotransferase (ALT) values at the baseline (bALT) and during the RDV administration period. ΔHR was positively associated with HRb (ß = 0.772, p < 0.001) and bALT (ß = 0.245, p = 0.005). In conclusion, our results confirmed a significant association between RDV administration and development of bradycardia. This effect was proportional to baseline HR and was associated with higher levels of baseline ALT, suggesting a possible interaction between RDV liver metabolism and a vagally-mediated effect on HR due to increased availability of RDV metabolites.


Subject(s)
Bradycardia , COVID-19 , Humans , Bradycardia/chemically induced , Bradycardia/epidemiology , COVID-19/complications , RNA, Viral , Retrospective Studies , Case-Control Studies , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/adverse effects
3.
Front Psychol ; 12: 624655, 2021.
Article in English | MEDLINE | ID: covidwho-1247906

ABSTRACT

The coronavirus disease 2019 (COVID-19) has been causing major disruptions in the sporting world. Negative physiological and psychological effects on athletes have been reported, such as respiratory issues and increased stress. Therefore, it is timely to support this population by presenting cost-effective and accessible intervention techniques to reduce this impact. Slow-paced breathing (SPB) has the potential to counteract many of the detrimental effects of COVID-19 that can directly affect sports performance. In this article, we present and justify the use of SPB in athletes by focusing on three key outcomes, namely aerobic endurance performance, emotional well-being, and sleep quality. We examine the physiological mechanisms that underpin these three outcomes and review literature showing that SPB can activate anti-inflammatory pathways, increase lung capacity and, in turn, improve aerobic endurance, emotional well-being, and sleep quality. We conclude that interventions using SPB can have preventive and rehabilitative properties for athletes. Future studies should empirically test the potential of SPB to help this specific population.

SELECTION OF CITATIONS
SEARCH DETAIL